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Speaker Acceptance & Disclosure

 I have no affiliations, sponsorships, honoraria, 

monetary support or conflict of interest from any 

commercial source.

However…it is only fair to caution you that this talk 

has not undergone ethical review of any sort.

Therefore, you listen at your own peril.  
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On Sermons and Stats Lectures

This probably applies to stats lectures too, so I’ll 

make every effort to keep it snappy

"The secret of a good sermon 

is to have a good beginning 

and a good ending; and to 

have the two as close 

together as possible." 

— George Burns



NHRC 2011 © Bruce Weaver 4

1) normally distributed with 

2) equal variances, and 

3) each observation must be independent of 

all others. 

Now to the serious stuff…

 The populations from which the two samples are 

(randomly) drawn must be 
Yes, that looks 

familiar.

Statistics textbooks often list the following 

assumptions for the unpaired t-test, 

usually in this order:
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Example from a Biostatistics Textbook

1. ―…the observations in each 

group follow a normal 

distribution.‖

2. ―The standard deviations (or 

variances) in the two samples 

are assumed to be equal‖

3. ―…independence, meaning that 

knowing the values of the 

observations in one group tells 

us nothing about the 

observations in the other group‖
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1. Normally distributed data:  It is 

assumed that the data are from a 

normally distributed population.

2. Homogeneity of variance:  … the 

variance should not change 

systematically throughout the data.

3. Interval data:  Data should be 

measured at least at the interval 

level.

4. Independence:  …behaviour of one 

participant does not influence 

behaviour of another.

Example from an Applied Stats Textbook:

Assumptions for Parametric Tests

First Edition (2000)
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Normality Assumption Often Listed First

The assumption of sampling from normally 

distributed populations often appears first in the list

This can lead users of statistics to conclude that 

normality is the most important assumption

 It is not – the independence assumption is by far 

the most important one…but I don’t have time to talk 

about that today

How unfortunate!  It sounds like a 

real humdinger of a topic.
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Some Books Recommend Testing for 

Normality Prior to Running a t-test

E.g., Field (2002) says to run a test of normality on 

the dependent variable

 In an example, he runs the Kolmogorov-Smirnov

test of normality (with Lilliefors correction), and finds 

that it is statistically significant 

What does that mean?

Who cares?!  Did you say 

Smirnov? Top me up please!
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 For any test of normality:

H0:  Sample is drawn from a normal population

H1:  Sample is drawn from a non-normal population

 If test of normality is statistically significant (p ≤ .05), you 

conclude that the sample is from a non-normal population

 If test of normality is not statistically significant (p > .05), you 

have insufficient evidence to reject the null hypothesis—so 

you proceed as if the population is normal

Interpreting Tests of Normality

This is what Field (2000) found
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Okay, so what now?

―... we cannot use a parametric 

test, because the assumption of 

normality is not tenable.‖ (Field 

2000, pp. 48-49)

Andy Field

He then recommended using the 

Mann-Whitney U test (a rank-

based test) instead of the t-test
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Recap of Field’s Procedure

Test of 

Normality

Assume normality and 

use a parametric test 

(e.g., independent 

groups t-test)

Reject the normality 

assumption, and use a 

non-parametric test (e.g., 

Mann-Whitney U test)

Not statistically 

significant (p > .05)

Statistically 

significant (p ≤ .05)
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Now ho-o-old on 

there, Baba-Louie!

Quick-Draw McGraw Baba-Louie

Huh?
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Let’s not forget 

what George Box 

said about 

normality!

Baba-Louie

Okay..

.

Quick-Draw McGraw
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No real data are normally distributed

―…the statistician knows…that in 

nature there never was a normal 

distribution, there never was a 

straight line, yet with normal and 

linear assumptions, known to be 

false, he can often derive results 

which match, to a useful 

approximation, those found in the 

real world.‖ (JASA, 1976, Vol. 71, 791-

799; emphasis added)

George Box

Famous statistician and textbook author—

and son-in-law of Sir Ronald F. Fisher
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So the populations are 

never truly normal, at 

least not if you’re 

working with real data.

Why is normality 

listed as one of the 

assumptions then?
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What the textbooks should say

If one was able to sample randomly 

from two normally distributed

populations with exactly equal 

variances (and with each score 

being independent of all others), 

then the unpaired t-test would be an 

exact test.

Otherwise, it’s an 

approximate test.
Yours truly

Obscure statistical curmudgeon from 

NW Ontario—no relation to R.F. Fisher.
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Approximate.  

Is that bad?

No, not 

necessarily.
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Another Great Comment from Box

George Box

All models are wrong.  

Some are useful.

i.e., they are 

approximations!



NHRC 2011 © Bruce Weaver 19

A New Question:  Is it Useful?

From this point of view, the important question is not 

whether the populations we’ve sampled from are 

normal – we know they are not

Rather, the important question is whether the 

approximation is good enough to be useful
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Under what conditions is 

the approximation good 

enough to be useful?

To answer that, we 

need to look more 

carefully at how z- and 

t-tests really work. 
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How z- and t-tests really work

 Numerator = a statistic minus the value of the 

corresponding parameter under a true null hypothesis

 Denominator = the standard error of the statistic in the 

numerator

0statistic - parameter|
 or 

statistic

H
z t

SE

Common format for all z- and t-tests:
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Example 1: Single-sample t-test

X

X
t

s

Statistic = sample mean

Parameter under a 

true H0 = pop. mean

SE of the mean

2

X

s s
s

nn (df = n - 1)
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Example 2: Unpaired t-test

1 2

1 2 1 2

X X

X X
t

s

1 2

2 2

1 2

pooled pooled

X X

s s
s

n n

Statistic

Parameter under 

True H0

SE of the statistic in 

the numerator

(df = n1 + n2 - 2)
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 It is the sampling distribution of the 

statistic in the numerator that must be 

normal, or at least approximately normal, 

in order to have a good test

0statistic - parameter|
 or 

statistic

H
z t

SE
I’ll make 

a note.

The KEY Point
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0statistic - parameter|
 or 

statistic

H
z t

SE

The Central Limit Theorem (CLT)

 The CLT tells us that as the sample size increases, the 

sampling distribution of the statistic converges on a 

normal distribution, regardless of the shape of the raw 

score distributions

 And n does not have to be all that large—see example on 

next slide with n = 16
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An Example with 10,000 Samples

of n = 16 from a Skewed Population

The Population Distribution

Mean = 26.98

SD = 5.62

Distribution of Sample Means

(for samples of n = 16)

Mean = 26.99

SD = 1.39

Pretty darn 

close to 

normal

Severely 

skewed

Close enough for the Normal distribution 

to be a useful approximation
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So in other words, the larger

the sample size, the less 

important normality of the 

population distribution is, right?

This is 

correct, Baba-

Louie!
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But at the same time, as 

the sample size increases, 

tests of normality become 

more and more powerful.

Tim ―the Stats-Man‖ Taylor & Al

That’s good, isn’t it Quick-

Draw?  The more POWER, 

the better!  Right?
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Not really so in 

this case, Tim.

Pay attention now, Tim.  

Quick-Draw is about to make 

a very good point.
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As n increases, normality becomes 

less and less important for the 

validity of the t-test.

Sample Size

Importance of 

Normality for 

Validity of the 

t-test

As n increases, 

the importance 

of normality 

decreases.

Low High

Low

High
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But at the same time, tests of 

normality become more and 

more likely to detect 

significant non-normality.

Sample Size

Power to detect 

Non-Normality As n increases, the 

power to detect 

non-normality 

increases.

Low High

Low

High
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Sample Size
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Recap of Quick-Draw’s Point

 As n increases:

 The importance of normality decreases

 The power to detect non-normality increases

At cross-

purposes!
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And that, my friends, is 

why tests of normality 

are really quite useless

as precursors to t-tests 

or other parametric tests.

Yes, I see what 

you mean, 

Queeks-Draw.
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Robustness of the t-test to 

Non-Normality of the Populations

Some Examples—Time Permitting

Click Here to Continue 

the Presentation

Click Here to Skip 

to the Summary
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Robustness of the t-test to Non-normality

The upcoming figure shows performance of the t-test 

when sampling from populations of various non-

normal shapes

Performance is measured by how closely the actual 

proportion of Type I errors matches the pre-

determined alpha level – e.g., if you set alpha to .05, 

the actual proportion of Type I errors should be close 

to .05 for a good test
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Cochran (1942) suggested allowing a 20% error in 

the actual Type I error rate—e.g., for nominal 

alpha = .05, an actual Type I error rate between 

.04 and .06 is acceptable

Cochran’s criterion is admittedly arbitrary, but other 

authors have generally followed it (or a similar 

criterion) – so we will apply it here

Cochran’s Criterion for 

Acceptable Test Performance
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Thanks to Gene Glass for 

Providing the Upcoming Figure

Gene V. Glass
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Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition
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Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition

R = rectangular, S = skewed, N = normal, L = leptokurtic, ES 

= extreme skew, E-S = extreme negative skew, B = bimodal, 

M = multimodal, SP = spiked, T = triangular, π = dichotomous
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Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition

The actual proportion of Type I Errors 

(over repeated samples)

.05

.01
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Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition

Numbers above the bars are the sample sizes; if only one 

number appears, both samples were the same size
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Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition

Cochran’s criterion of acceptable test performance with 

alpha set to .05 = actual Type I error rate of .04 to .06

Three cases where the 

actual Type I Error rate falls 

outside the range .04 to .06
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 S/S – both populations 

skewed

 N/S – one population is 

normal, the other skewed

 R/S – one population is 

rectangular, one is skewed

 In all 3 cases, n1 = n2 = 5 

 In all 3 cases increasing the 

sample size to 15 (one bar 

to the right) results in test 

performance that meets 

Cochran’s criterion
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A List of Cases Where 

Cochran’s Criterion was Met

 R/R – both populations rectangular; n1 = n2 = 5

 S/S – both populations skewed; n1 = n2 = 15

 N/S – one population normal, one skewed; n1 = n2 = 15

 R/S – one population rectangular, one skewed; n1 = n2 = 15

 L/L – both populations leptokurtic (i.e., tails thicker than the 

normal distribution); n1 = 5, n2 = 15

 ES/ES – both populations extremely skewed in same 

direction; n1 = 5, n2 = 15

 M/M – both populations multimodal; n1 = 5, n2 = 15

 SP/SP – both populations spiked; n1 = 5, n2 = 15

 T/T – both populations triangular; n1 = 5, n2 = 15
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Sampling from Dichotomous Populations

Cochran’s criterion (i.e., Type I error rate between 

.04 and .06) was also met when samples were 

drawn from dichotomous populations with the 

following properties:

 P = .5, Q = .5, n = 11

 P = .6, Q = .4, n = 11

 P = .75, Q = .25, n = 11

 If P and Q get too extreme (e.g., outside the range .2 

to .8), test performance deteriorates

P and Q represent the 

proportions falling in 

the two categories
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Summary of Main Points
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Summary of Main Points (1)

Textbooks list the following assumptions for t-tests:

 Sampling from normal populations

 Homogeneity of variance

 Independence of observations

The normality assumption is often listed first

This leads (some) people to conclude that  it is the 

most important assumption
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Summary of Main Points (2)

 Some textbook authors recommend using a test of normality 

prior to running a t-test – e.g., Field (2000) recommended the 

procedure shown below:

Test of 

Normality

Assume normality and 

use a parametric test 

(e.g., independent 

groups t-test)

Reject the normality 

assumption, and use a 

non-parametric test (e.g., 

Mann-Whitney U test)

Not statistically 

significant (p > .05)

Statistically 

significant (p ≤ .05)
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Summary of Main Points (3)

 But the important thing is normality of the sampling 

distribution of the statistic in the numerator of the t-ratio

 As the sample size increases, that 

sampling distribution converges on the 

normal distribution, regardless of 

population shape

 But at the same time, tests of normality become 

more and more powerful – i.e., they are more 

and more likely to detect departures from 

normality as those departures become less and 

less important for the validity of the t-test
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The Population Distribution

Mean = 26.98

SD = 5.62

Distribution of Sample Means

(for samples of n = 16)

Mean = 26.99

SD = 1.39

Pretty darn 

close to 

normal

Severely 

skewed

Close enough for the Normal distribution 

to be a useful approximation

Cross-purposes!
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Therefore, testing for 

normality prior to 

running a t-test is rather 

silly and pointless.

I agree!

And so…

do we.
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If not testing for normality, then what?

If means and standard deviations 

are sensible and appropriate for 

description, then t-tests (or 

ANOVA etc) will likely be just fine 

for inference.

Yours truly

E.g., reasonably symmetrical 

distribution with no outliers 

or extreme scores
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Apologies to Andy Field

Finally, in case Andy Field’s 

lawyer is present, let me 

point out that the bad advice 

about testing for normality 

given in Field (2000) does 

not appear in the third edition 

of the book (Field, 2009).

Third Edition (2009)
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No animals, cartoon or 

real, were harmed 

during the production 

of this presentation.

A Final Disclaimer
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Okay…it’s over!

Time to wake up!

Any Questions?

bweaver@lakeheadu.ca

mailto:bweaver@lakeheadu.ca
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Bruce Weaver

E-mail: bweaver@lakeheadu.ca

Tel:  807-346-7704

Go see our posters!

mailto:bweaver@lakeheadu.ca
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The Cutting Room Floor
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The DemTect is a cognitive test designed to detect mild cognitive 

impairment and early dementia (Kalbe et al., Int J Geriatr Psychiatry 2004; 

19: 136–143)

Summary of 

Key Points

Screening for Medically At-Risk Drivers with the SIMARD-MD:  

A Failure to Apply the CIHR Knowledge-to-Action Framework
Michel Bédard, PhD1-3; David B. Hogan, M.D4.; Bruce Weaver, MSc1,2

1. Lakehead University; 2. Northern Ontario School of Medicine; 3. St. Joseph’s Care Group; 4. University of Calgary

Background

•

•

•

 

Failure to Apply the Knowledge-to-Action Framework

1. British Columbia has adopted the SIMARD-MD for 

screening individuals who ―may have cognitive impairment 

or dementia that could affect their ability to drive‖.

2. The first step in the CIHR Knowledge-to-Action framework 

is synthesis—i.e., systematic review and critical appraisal of 

the existing evidence.  This requires the existence of multiple 

independent studies.

3. Currently, only one published study examines the use of 

the SIMARD-MD as it is being implemented in BC. Therefore, 

synthesis is not possible, and the CIHR Knowledge-to-Action 

Framework has not been followed.

mbedard@lakeheadu.ca

In our view, the findings in this article do not represent the 

breakthrough that is claimed.

We see no clear and compelling evidence for superiority of the 

SIMARD-MD over other well known cognitive tests

For details, see our forthcoming commentaries in the Journal of 

Primary Care & Community Health and the Canadian Geriatric 

Journal.

•

•

Relationship Between the SIMARD-MD and DriveABLETM

Currently, there is 

only one published 

study examining 

the SIMARD-MD.

There is nothing to 

synthesize.  So the BCMA 

and the OSMV have 

stumbled badly at the first 

hurdle in the Knowledge-to-

Action process.

How strong is the evidence in that one study?

•

Declaration of Conflicting Interests

The outcome measure used in the original and validation studies (DriveABLE™ On-Road Evaluation) is part 

of the DriveABLE™ Assessment. DriveABLE™ Assessment Centres is a University of Alberta spin-off 

company. The CEO and President of DriveABLE™ Assessment Centres, Dr Allen Dobbs, is the spouse of the 

first author (B.D.). B.D. has no shares in or financial relationship to DriveABLE™ Assessment Centres. Dr 

Allen Dobbs was not involved in this research. D.S. declares no competing interests.

The following is an excerpt from Dobbs & Schopflocher (2010, p. 126). ―At CIHR, knowledge translation (KT) is defined as a 

dynamic and iterative process that includes 

synthesis, dissemination, exchange and ethically-

sound application of knowledge to improve the 

health of Canadians, provide more effective health 

services and products and strengthen the health 

care system.‖ (emphasis added)

Source: http://www.cihr-irsc.gc.ca/e/39033.html

Definition of Knowledge Translation

Suspected cognitive 

impairment that may 

affect ability to drive

Screen with 

SIMARD-MD

Score ≤ 70

2010 BC Guide in Determining 

Fitness to Drive

The 2010 BC Guide in Determining Fitness to Drive is published by 

the BC Office of the Superintendent of Motor Vehicles (OSMV)

It can be downloaded from the BCMA website 

(https://www.bcma.org/publications-media/handbooks-guides)

The policy rationale section of the Guide begins by questioning the 

utility of other well known cognitive tests (e.g., Mini Mental Status 

Exam, Trails A and B) for making decisions about fitness to drive.

It concludes by describing the superior properties of the SIMARD-

MD—however, no actual evidence is reported.

•

•

Screening Tool for the Identification 

of Medically At-Risk Drivers: 

Modification of the DemTect

A for-profit, University of Alberta ―spin-

off‖ company that provides both cognitive 

testing and on-road driving assessments
( ) ( )

10-word 

list recall

Backward 

digit span

Number 

transcoding*

Word fluency 

(Supermarket task)

Delayed recallDemTect
(5 tasks)

SIMARD-MD 
(3 tasks)

* SIMARD-MD uses only 

the first two items

The DemTect and the SIMARD-MD

The CIHR Knowledge-to-Action Process

GO SEE OUR POSTER!
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The Shape of the Sampling Distribution is a

Function of Population Shape and Sample Size

Population Distribution

Non-Normal

Sample Size

Small

Large

The colour in the plot 

area represents the 

shape of the 

sampling distribution 

of the statistic

Non-Normal

Normal

Many combinations of 

population shape and 

sample size result in 

the same sampling 

distribution shape

Normal



NHRC 2011 © Bruce Weaver 60

Summary of Main Points (3)

 But the important thing is normality of the sampling 

distribution of the statistic in the numerator of the t-ratio

 As the sample size increases, that sampling 

distribution converges on the normal 

distribution, regardless of population shape

 But at the same time, tests of normality become 

more and more powerful – i.e., they are more 

and more likely to detect departures from 

normality as those departures become less and 

less important for the validity of the t-test
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Population Distribution

Non-Normal

Sample Size

Small

Large

Normal
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Does n have to be ≥ 30?

 Some books say that we should (or even must) have n ≥ 30 

to ensure that the sampling distribution of the mean is 

approximately normal

 But the examples shown earlier demonstrate that the 

sampling distribution of the mean often becomes nice and 

symmetrical with sample sizes much lower than 30

Figure 12.2 from Glass & Hopkins, 

Statistical Methods in Education and Psychology , 3rd Edition
The Population Distribution

Mean = 26.98

SD = 5.62

Distribution of Sample Means

(for samples of n = 16)

Mean = 26.99

SD = 1.39

Pretty darn 

close to 

normal

Severely 

skewed

Close enough for the Normal distribution 

to be a useful approximation
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What is the ―rule of 30‖ about then?

 In the olden days, textbooks often described inference for 

small samples and inference for large samples

 E.g., comparing the means of 2 independent samples:

 Small samples:  independent groups t-test using critical value of t

 Large samples:  independent groups t-test using critical value of z

From the Standard 

Normal Distribution

Often defined as n ≥ 30
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Why make the distinction?

 Why did textbook authors make the distinction between small 

and large samples?

 Remember that in those days, data analysts used tables of 

critical values to determine if a test result was statistically 

significant

 Tables of critical values take up a lot of room!

 When n ≥ 30, the critical value of z (from the Standard Normal 

distribution) was judged to be close enough to the critical 

value of t that it could be used instead

 In older books, tables of critical t-values only go up to df=30 

or so
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Critical value of z 

(α = .05, 2-tailed)

After df = 30 (or even 20), 

the difference in the critical 

values is very small.
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Back to Stats Class!

 Anyone who has taken an introductory stats class no doubt 

remembers tackling problems like this:

The birth-weight of newborns 

in a particular hospital is 

(approximately) normally 

distributed with a mean of 

3.4 kg and a standard 

deviation of 0.6 kg.  What 

proportion of newborns in 

this population have a birth-

weight ≥ 4.5 kg or ≤ 2.3 kg?

Yes, that 

looks 

vaguely 

familiar.
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Step 1: Sketch the Distribution

3.4 4.0 4.6 5.21.6 2.2 2.8

(Mean)

1, 2 & 3 SD above the mean1, 2 & 3 SD below the mean

ANSWER:  Area below 2.3 kg + area above 4.5 kg

2.3 kg 4.5 kg
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Step 2: Convert to Z-scores

Z = 
Score – Mean 

SD 

Z1 = 
2.3 – 3.4 

0.6 
= -1.83

Z2 = 
4.5 – 3.4 

0.6 
= 1.83

Now refer these 

values to the 

standard normal 

distribution.
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Step 3: Sketch the Standard Normal 

Distribution

0.0 1.0 2.0 3.0-3.0 -2.0 -1.0

(Mean)

1, 2 & 3 SD above the mean1, 2 & 3 SD below the mean

Z-score 

for 4.5 kg 

= 1.83

Z-score 

for 2.3 kg 

= -1.83
Look up area under 

the curve in a table, or 

use software to find it
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Step 4 the old fashioned way

 Area above 1.83 = .0336

 Normal distribution is 
symmetrical about the 
mean

 Therefore, the area below
-1.83 = .0336 too

 Therefore, the proportion of 
newborns having a birth-
weight ≥ 4.5 kg or ≤ 2.3 kg 
is  .0336 2 = .0672, or 
6.72%

Entry for Z-score 

of 1.83 =.0336
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Step 4 the new-fangled way

 Nowadays, one would 

probably use software

to obtain the area ≤ Z

= -1.833 plus the area 

≥ Z = 1.833

 E.g., StaTable from 

www.cytel.com

Z = 1.83

Standard 

normal 

(μ=0, σ=1)

Area ≤ -1.83 plus 

area ≥ 1.83 = .06725

http://www.cytel.com/
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Why Did That Work?

Z-score problems like that worked because the 

distribution of scores was (approximately) normal

 In that case, you can transform to Z-scores and refer 

to the Standard Normal distribution
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2 2( ) 2

( )
2

Ye
f y

The Normal Distribution

 Anyone who has taken an introductory stats course will 

remember the Normal (bell-shaped) distribution

 Actually, a family of Normal distributions

Mean

Standard 

Deviation
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Some Examples

μ =100

σ = 15
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Example 1: μ = 100, σ = 15
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Some Examples

μ =100

σ = 15
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Assumptions for the Unpaired t-test (x)

1. The groups are 

independent.

2. The [dependent] variables 

of interest are continuous.

3. The data in both groups 

have similar standard 

deviations.

4. The data is Normally 

distributed in both groups.
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Assumptions for the Unpaired t-test (x)

1. ―…the observations in each 

group follow a normal 

distribution.‖

2. ―The standard deviations (or 

variances) in the two samples 

are assumed to be equal‖

3. ―…independence, meaning that 

knowing the values of the 

observations in one group tells 

us nothing about the 

observations in the other group‖
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Assumptions for the Unpaired t-test (x)

 ―Not only must the samples 

be from Normal distributions, 

they must be from Normal 

distributions with the same 

variance.‖

Also clear from the section 

heading that the two 

samples must be 

independent
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How z- and t-tests really work (2)

 If the population SE is known, this ratio = Z, and the 

standard normal distribution can be used

 If the population SE is not known, it must be estimated 

(using the sample standard deviation)

 In that case, ratio = t, and its sampling distribution is a t-

distribution with appropriate degrees of freedom (df)

0statistic - parameter|
 or 

statistic

H
z t

SE
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How z- and t-tests really work (3)

Single-sample z-test

X

X

X
z

Statistic

Parameter under 

True H0

SE of the statistic in 

the numerator

2

X nn
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Exact vs. Approximate Tests

 A test is exact if the sampling distribution of the test statistic is 

given exactly by the mathematical distribution used to obtain 

the p-value

 E.g., the binomial distribution gives exactly the sampling 

distribution of X (the number of Heads) in coin-flipping 

experiments

 A test is approximate if the mathematical distribution only 

approximates the true sampling distribution of the test 

statistic

 E.g., chi-square tests are approximate tests
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Back to the Assumptions

 As we’ve seen, textbooks often list the assumptions 

for a t-test as something like this:

1. The data must be sampled from a normally distributed 

population (or populations in case of a two-sample test).

2. For two-sample tests, the two populations must have 

equal variances.

3. Each score (or difference score for the paired t-test) must 

be independent of all other scores.
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The First Two Assumptions are Never Met

1. As Box noted, nothing in nature is truly normal

2. Furthermore, it is virtually impossible for two different 

populations to have variances that are identical down to the 

last decimal place.

Therefore, no one who is working with real data meets the 

assumptions of normality and homogeneity of variance.

Oh dear!
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Okay…it’s over!

Time to wake up!

Any Questions?

bweaver@lakeheadu.ca

mailto:bweaver@lakeheadu.ca

