Using Evolutionary Principles to Discriminate the Non-Redundant Functions of Related Proteins Critical to Innate Immunity and Cancer Biology

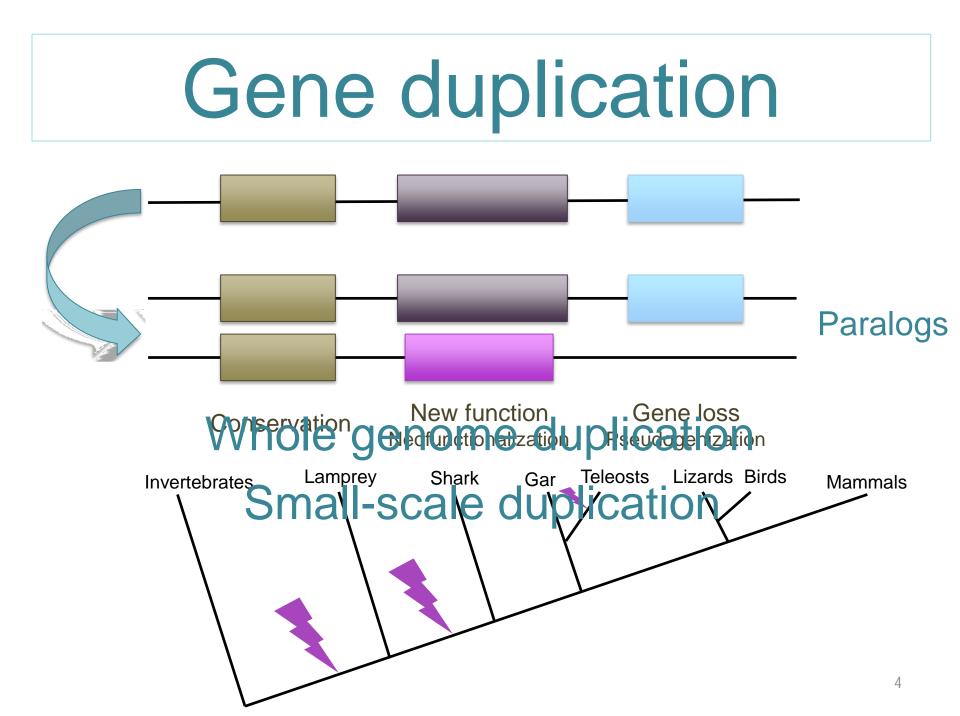
Caitlyn Vlasschaert

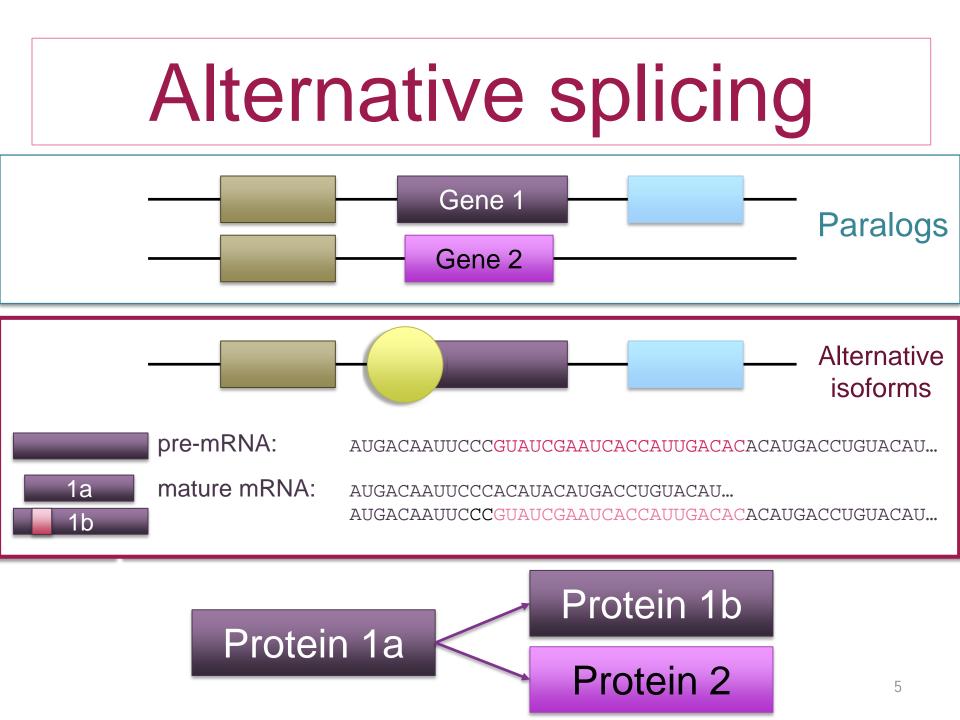
Work for M.Sc. in Biochemistry and Bioinformatics

Supervisors: Dr. Douglas Gray and Dr. Xuhua Xia Ottawa Hospital Research Institute University of Ottawa

Conflicts of Interest

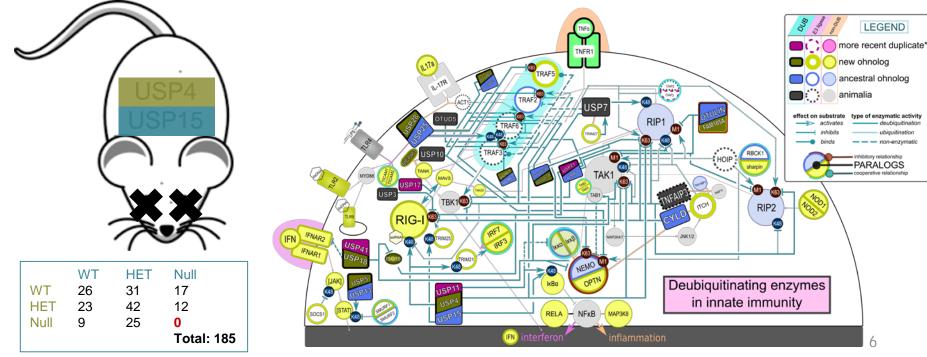
• I have no conflicts to declare.


Using Evolutionary Principles to Discriminate the Non-Redundant Functions of Related Proteins Critical to Innate Immunity and Cancer Biology

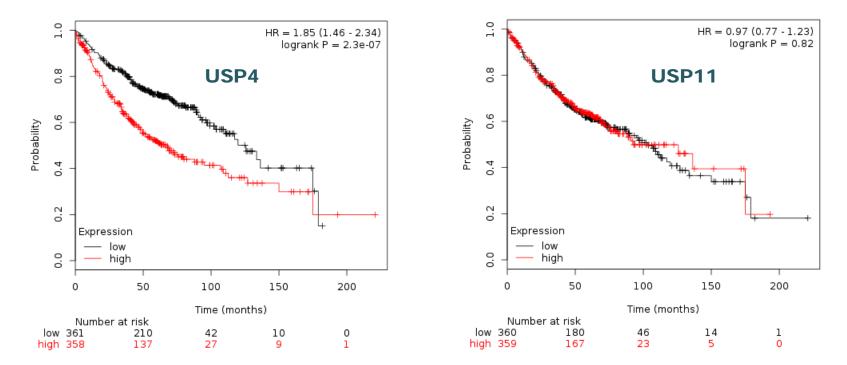

Related proteins: Gene duplication and alternative splicing Deubiquitinating enzymes – USP4, USP15, USP11

Evolutionary principles: Computational tools to infer how natural selection shapes proteins over time as different species diverge from the tree of life

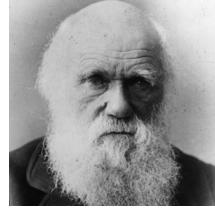
Wet lab Dry lab (evolutionary genomics)


Guiding basic science research

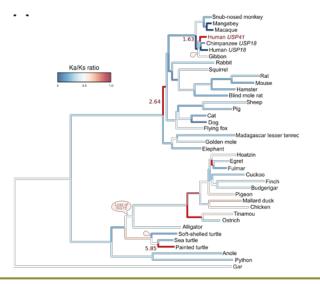
Using Evolutionary Principles to Discriminate the Non-Redundant Functions of Related Proteins Critical to Innate Immunity and Cancer Biology


Paralogs and alternative isoforms often retain overlapping roles. What (if anything) makes them unique and essential?

Vlasschaert et al, in preparation

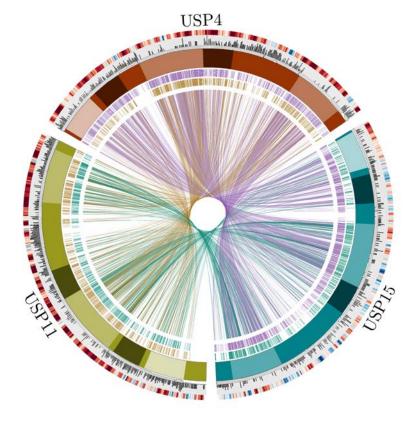

The opposing correlations of USP4 and USP15 expression to lung cancer survival

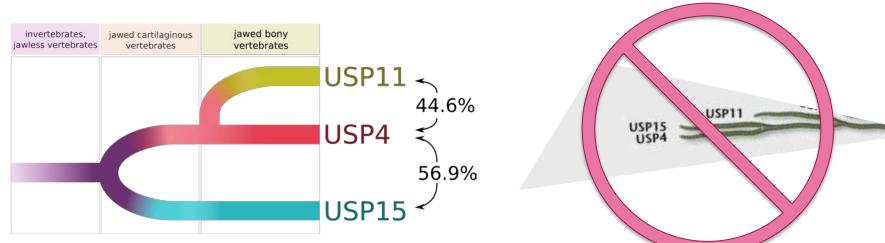
Overall survival in patients with adenocarcinoma of the lung


http://kmplot.com/analysis/

How to we apply evolutionary logic to infer protein function?

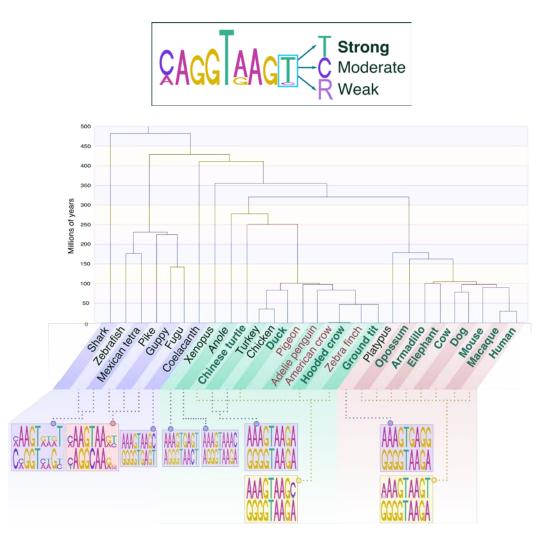
wikipedia.org


Sequence alignment and phylogeny-building


573905340 ref XP 318101506 ref NP 001188 **Q1** 323510630 ref NP_001191 gi 432874027 ref XP 00407 118140098 ab ABK63480 610391014 ab AHM76805 262318083 658868045 ret 305855021 dbi ai 831277645 ref XP_01266 gi gi 899144121 ref NP_00129 anole ISG15 sea turtle ISG15 python ISG15 nouse rat ISG15 isg1 rabbit ISG15 tree shrew ISG15 lacaque ISG15 gorilla_ISG19 pan_paniscus_ISG15 human ISG15 platypus SG15 Dig. dog ISG15 cat_ISG15 opossum_ISG15 tasmanian_devil_ISG15

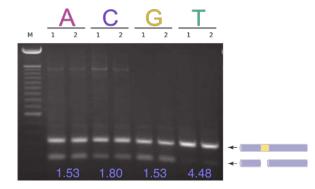
0391.1	L	ITVKLMTGKECSVDLEPSATVTELKQEVKRLAGIPETSQKLGLNGGGHITVLEDHRT
8203.1		LIITLLNGQTHNVHVNPNATVGELKREIAPRFKARPSQLKLSITNGQILELDQDQKT
1098.1	1	LTVKLLGGDVKRLEVSGDATVGILKQVISQYFNVPTFKOKLSAENGQRISLEDESRT
2436.1		ITIVMINGTSRTLVVPPNTTVGSLKAQIETEMGVPAATORLVVDNCORVTMSEDSRS
11	×.	INIKMINGTVHTLTVYPDDTVGKLKNLIHSOFGEPPHKOKLVFVNGORIDLSDDSRT
î		IIIIMINGTRHTLSVOPODTVGYLKOVIODKLGVPTERORLVVDNGHRTDLNNDSOT
1		IIITMLNGRVRHTDGETODTVG#LKOLIOOKLAVPAEROKLLYDNGORTDLSDDSRP
6907.1	1	IVIKMLDGTSHTLKVNPHDTVGSLKMLIQOKLGVPAAROKLIFRNGSSTPLNDDSRT
0844.1		ITITML-GESHTLTWNPEDTVGSLKIKIOEKLGVNHORORLVFINGORTPLNDDSKP
11	<u>.</u>	ITVKMLEGTSCTLRVNPODTVGSLKIRIOEKLGVPPOROKLVFVNGOTTDLSDDSKP
9709.1	1	IQIKFINGHTYPLAVSSSITVGDLKKRIOKESDVTPAROKLSNGNGINFSNDSST
7819.1		LTITLLNGDSVPLTVPPHTTVGSLKSLIHOTLGVATSTORLSGVNGNNISLNDDSKT
1013.1	4	LHFKMLTGEVHTLTVSPNHTM_EVKVLLERKMGCRRYHOKLAAEAGSGID-LRDASS
		LSVKLLTGENHSLEVTSTMTVSAFKAOIAKKTGVSPVOOKLACONGA-VVELRDGSR
		LSVKLLTGEIHSVDSSACRTV/DFKIQVGRKTGVPPVQOKLACONSTHIN-LQDSSA
		LKVKMLGGNDFLVSVTNSMTVSELKKQIAQKIGVPFIQQKLACQASIALA-VLQDGLT
		LKVKHLGGKEFLVSVTNSHNISELKKQVAQKSGVPAFQQKLA-HQSGEMLQDGVA
		LKVKML-SKEFQVPMRDSMLLSELKQLITQKTQVPAFRQRLLVQGSNAVLQDGVP
		LKVKMLGSKEISVPLSESLTASELKRRIAQETGVPAFQQLLAVHPGGAALLEEVP
		LKVKMLGGQEFMVPISDSMLAMELKQKITKKIGVPAFQQRLAIHPSGTVLQDRVP
		LKVKMLGGNEFQVSLSNSMSVSELKAKIAQKIGVHAFQQRLAVHPSG-ATLQDRVP
		LTVKMLAGNEFQVSLSDSMSVSELKAQITQKIGVHAFQQRLAVHPSGVALKDGVP
		LTVKMLAGNEFQVSLSNSMSVSELKAQITQKIGVHAFQQRLAVHPSGVALQDRVP
		LTVKMLAGNEFQVSLSSSMSVSELKAQITQKIGVHAFQQRLAVHPSGVALQDRVP
		LTVKMLGGQEILVPLRDSMTVSELKQFIAQKINVPAFQQRLAHLDSREVLQEGVP
		QKVKMINGKEFLVPIRESMPVSELRQQIAQKTGVPTFQQHLAVHPANRVLQDGLP
		LKVKMLGGKEILVPLRDCMMASDLKQQIAREIGVPAFQQRLA-HPAGNVLQDGVP
		LTVKMLGGEEFLVPLRDSMLASELKQQIALKTGVPAFQQRLATHPAGTVLQDGIS
		LKVKMLGGEEFLVPLRDNMLVSELKQQIAQKTGVPAFQQRLATHPAGTVLRDGVP
		LPLKVKMITGKEYTVNAQINMTVLNLKKKIAAVVKVPAFTQKLA-TVGGELLLNWNL
		VMILNLRVKMITGKEFSVKVEDNITVLDLKKRISRQVGSPAHTQRLV-TEGGEVLLN0KL

(1) (2) Genealogy and radiation of paralogs USP4, 11, 15 Selection for USP4 alternative isoforms Genealogy and radiation of all deubiquitinases

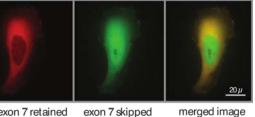


USP11 was derived from USP4 during a small-scale duplication event, which occurred after the whole genome duplication that produced USP4 & USP15.

Vlasschaert et al., BMC Evol Biol (2015)


In USP4, splice site nucleotides that favour alternative splicing are evolutionarily conserved...

Vlasschaert et al., Sci Rep (2016)



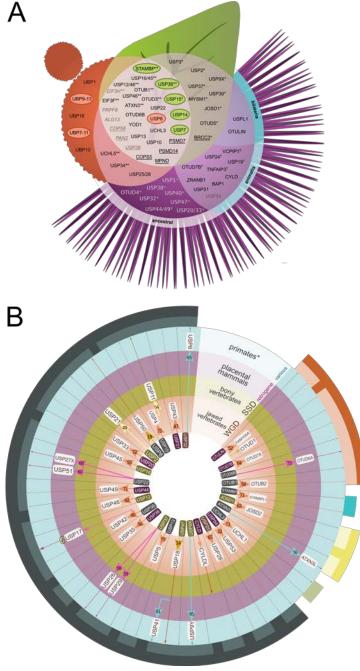
... mutating these sites changes splicing proclivity...

... the long and short isoforms have distinct subcellular localizations!

HeLa cell line

exon 7 retained

merged image


293T cell line

10

exon 7 skipped exon 7 retained

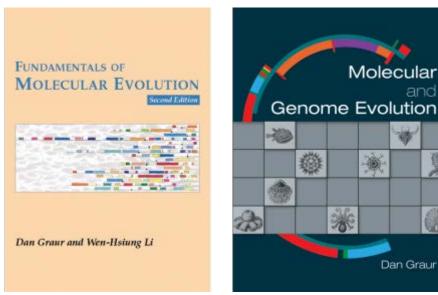
merged image

Expansion

from **29** DUBs in the eukaryotic ancestor to **93** in the human genome

Radiation

e.g. USP4 interacts with CtIP in DSB repair while USP15 does not.
USP4 and CtIP were generated at the same point in time (whole genome duplication) and they interact via new domains.


USP4-CtIP represents a new, specific interaction (neofunctionalization) that is maintained by natural selection

Vlasschaert et al, in preparation

Take-away

- Molecular evolution analyses can be informative (and cost-effective) means to contextualize and guide wet lab research.
- Resources:

"Fundamentals of Molecular Evolution" by Graur & Li "Molecular and Genome Evolution" by Graur

Thank you!

Gray lab Dr. Doug Gray Dr. Josée Coulombe

> *Xia lab* Dr. Xuhua Xia

Vanderhyden lab David Cook