Novel aspects of pro-inflammatory signaling in lung epithelium

Marina Ulanova, MD, PhD

Medical Sciences Division, Northern Ontario School of Medicine

Molecular components of inflammatory responses as potential therapeutic targets

Syk Non-receptor protein tyrosine kinase Critical component of immunoreceptor signaling in leukocytes (T- and B-lymphocytes, macrophages, mast cells, neutrophils) Host response and inflammation

What is the functional role of Syk in airway epithelium?

TNFa

- Principal mediator of acute inflammatory responses to microbial pathogens
- Major source in the lung: activated alveolar macrophages
- Critical in host defence
- When overproduced, contributes to acute lung injury and septic shock

Inhibition of Syk downregulates TNF-induced inflammatory responses

> ICAM1 IL-6

iNOS and NO **MAPK**

NF-kB

Syk as a molecular target for therapy of lung inflammatory disorders

Dependence on integrin receptor engagement

- Integrins A large family of transmembrane receptors
 - In lung epithelial cells: 8 different ab heterodimers
 - Molecular sensors
 - Mediate responses to changes in the microenvironment
 - Provide co-stimulatory signals

Integrin receptors as therapeutic targets

Integrins as receptors for respiratory pathogens

Some pathogens use integrins as receptors for epithelial cell invasion

Examples: Pseudomonas aeruginosa, Bordetella pertussis, Yersenia, Listeria monocytogenes, Shigella flexneri, Mycobacterium tuberculosis, M. leprae Some viruses: rotavirus, adenovirus, echovirus

Pseudomonas aeruginosa: binding b1 integrins and fibronectin Result: adhesion to airway epithelium & invasion Epithelial Pseudomonas a5b1 aeruginosa injury Fibronectin Pro-inflammatory signaling? Can blocking of integrin-bacteria interactions inhibit inflammation?

New Research Program at NOSM

- Integrins as molecular targets to treat severe pulmonary infections caused by P. aeruginosa
- Using specific small molecular inhibitors