Cystathionine y-lyase and hypoxia: Implicating hydrogen sulfide in the hypoxic stress response

Sean Bryan, HBSc MSc (MD candidate)

Northern Ontario School of Medicine

The arrival of gasotransmitter biology

Endogenous gaseous signaling transmitters, or "gasotransmitters."

Exert fine, modulatory control over myriad cellular functions.

Distinctive features versus classic neurotransmitters:

- small molecules of gas membrane-permeable
- receptor-independent
 enzymatic production

H₂S: An unlikely hero

From notorious toxicant to critical physiological mediator?

Endogenously produced from L-cysteine by cystathionine γ -lyase (CSE) in mammalian cardiovascular tissues.

Intriguing biological effects throughout the body, from insulin secretion to memory formation to suspended animation!

Cardiovascular system effects include:

- potent cardio- and vasculoprotectant
- vasodilator
 pro-angiogenic
 anti-atherogenic
- pre/post-conditioning against I-R injury

H₂S is a physiologic vasodilator and regulator of blood pressure

First in vivo (mouse) model of targeted CSE gene deletion.

-/- mice featured absent CSE mRNA and protein in various tissues, and substantially decreased tissue (A) and serum (B) H₂S levels.

Mutant mice developed age-dependent hypertension (C).

Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science (2008) vol. 322 (5901) pp. 587-90

CSE-deficient SMCs over-proliferate

Smooth muscle cell (SMC) hypertrophy/hyperplasia contributes to vascular remodeling in hypertension.

Previously, CSE over-expression was shown to cause increased H_2S that inhibited SMC proliferation.

We found that CSE-KO SMCs had absent CSE mRNA and protein (**A**), decreased H_2S (**B**), and increased proliferative rates *in vivo* and *in vitro* (**C**), likely contributing to the observed hypertension.

Yang G, Wu L, <u>Bryan S</u>, Khaper N, Mani S, Wang R. **Cystathionine gamma-lyase deficiency and over-proliferation of smooth muscle cells**. Cardiovasc Res (2010) vol. 86 (3) pp. 487-95.

Project: CSE-deficient SMCs and hypoxia

<u>Rationale</u>: Hypoxia is a ubiquitous feature of cardiovascular diseases including hypertension and atherosclerosis, wherein H₂S has been shown to have important vasculoprotective effects.

There is growing interest in the relationship of H_2S to O_2 homeostasis stemming from recent evidence that H_2S may act as a novel O_2 sensor and may regulate hypoxia-inducible factor (HIF)-1.

<u>Hypothesis</u>: CSE-deficient SMCs will demonstrate an impaired hypoxic stress response due to the absence of endogenous H₂S's cytoprotective effects.

- survival
- redox status
- inflammatory profile
- mitochondrial function
- HIF-1 activity

CSE-deficient SMCs are more susceptible to hypoxia

(2) Apoptosis (Caspase 3/7 assay)

Hypoxic stress caused significantly decreased viability of CSE-KO but not WT cells (Figure 1), and significantly higher apoptosis of KO versus WT cells (Figure 2). These data indicate that CSE-deficient SMCs are more susceptible to hypoxia, suggesting an essential contribution of endogenous H₂S to some aspect(s) of the protective hypoxic stress response.

CSE-deficient SMCs feature an inherent redox imbalance

(4) Intracellular ROS (H₂DCFDA assay)

Hypoxia induced similarly increased SOD activity in both cell lines (Figure 3), but CSE-KO cells exhibited substantially greater ROS levels versus WT under both basal and hypoxic conditions (Figure 4). These data indicate that hypoxia exaggerates an inherent redox imbalance in CSE-deficient SMCs, suggesting that oxidative stress is a likely mechanism of their susceptibility to hypoxic stress.

CSE-deficient SMCs exhibit blunted HIF-1α mRNA expression during hypoxia

(5) HIF-1α expression (qPCR)

Hypoxia elicited marked HIF- 1α mRNA expression in CSE-WT cells, but only a relatively modest change in KO cells versus control. These data suggest that CSE-deficient SMCs may have impaired HIF-1 activity, which could underlie their compromised hypoxic stress response.

Summary & Future Directions

These data indicate that endogenous CSE/H₂S pathway:

- Exerts homeostatic control of SMC proliferation and intracellular ROS levels.
- Contributes to maintenance of SMC redox balance and survival under hypoxic conditions.
- Influences hypoxia-induced expression of HIF-1 α and possibly HIF-1-mediated signalling.

Immediate plans include clarification of the inflammatory picture, examination of mitochondrial function, and further investigation of the potential HIF-1 connection.

Thank you!

- Dr. Neelam Khaper (NOSM)
- Dr. Rui Wang (LU)
- Dr. Guangdong Yang (LU)

Special thanks to the NHRC organizing committee for hosting this event!

Northern Ontario School of Medicine

Gasotransmitter REsearch And Training Program

HEART& STROKE FOUNDATION OF ONTARIO

Contact: sean.bryan@nosm.ca

